Incremental Nonnegative Matrix Factorization for Face Recognition
نویسندگان
چکیده
منابع مشابه
Incremental Nonnegative Matrix Factorization for Face Recognition
Nonnegative matrix factorization NMF is a promising approach for local feature extraction in face recognition tasks. However, there are two major drawbacks in almost all existing NMFbased methods. One shortcoming is that the computational cost is expensive for large matrix decomposition. The other is that it must conduct repetitive learning, when the training samples or classes are updated. To ...
متن کاملSemi-Supervised Half-Quadratic Nonnegative Matrix Factorization for Face Recognition
Face recognition is a challenging problem in computer vision. Difficulties such as slight differences between similar faces of different people, changes in facial expressions, light and illumination condition, and pose variations add extra complications to the face recognition research. Many algorithms are devoted to solving the face recognition problem, among which the family of nonnegative ma...
متن کاملNonnegative Matrix Factorization for Pattern Recognition
In this paper, linear and unsupervised dimensionality reduction via matrix factorization with nonnegativity constraints is studied when applied for feature extraction, followed by pattern recognition. Since typically matrix factorization is iteratively done, convergence can be slow. To alleviate this problem, a significantly (more than 11 times) faster algorithm is proposed, which does not caus...
متن کاملIterative Weighted Non-smooth Non-negative Matrix Factorization for Face Recognition
Non-negative Matrix Factorization (NMF) is a part-based image representation method. It comes from the intuitive idea that entire face image can be constructed by combining several parts. In this paper, we propose a framework for face recognition by finding localized, part-based representations, denoted “Iterative weighted non-smooth non-negative matrix factorization” (IWNS-NMF). A new cost fun...
متن کاملDID: Distributed Incremental Block Coordinate Descent for Nonnegative Matrix Factorization
Nonnegative matrix factorization (NMF) has attracted much attention in the last decade as a dimension reduction method in many applications. Due to the explosion in the size of data, naturally the samples are collected and stored distributively in local computational nodes. Thus, there is a growing need to develop algorithms in a distributed memory architecture. We propose a novel distributed a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Problems in Engineering
سال: 2008
ISSN: 1024-123X,1563-5147
DOI: 10.1155/2008/410674